Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Int J Mol Sci ; 24(11)2023 May 26.
Article in English | MEDLINE | ID: covidwho-20232955

ABSTRACT

The term "liver disease" refers to any hepatic condition that leads to tissue damage or altered hepatic function and can be induced by virus infections, autoimmunity, inherited genetic mutations, high consumption of alcohol or drugs, fat accumulation, and cancer. Some types of liver diseases are becoming more frequent worldwide. This can be related to increasing rates of obesity in developed countries, diet changes, higher alcohol intake, and even the coronavirus disease 2019 (COVID-19) pandemic was associated with increased liver disease-related deaths. Although the liver can regenerate, in cases of chronic damage or extensive fibrosis, the recovery of tissue mass is impossible, and a liver transplant is indicated. Because of reduced organ availability, it is necessary to search for alternative bioengineered solutions aiming for a cure or increased life expectancy while a transplant is not possible. Therefore, several groups were studying the possibility of stem cells transplantation as a therapeutic alternative since it is a promising strategy in regenerative medicine for treating various diseases. At the same time, nanotechnological advances can contribute to specifically targeting transplanted cells to injured sites using magnetic nanoparticles. In this review, we summarize multiple magnetic nanostructure-based strategies that are promising for treating liver diseases.


Subject(s)
COVID-19 , Liver Diseases , Nanostructures , Humans , Regenerative Medicine , Hepatocytes/transplantation , COVID-19/therapy , Liver Diseases/therapy , Stem Cells , Liver Regeneration , Magnetic Phenomena
2.
Nature ; 617(7961): 555-563, 2023 May.
Article in English | MEDLINE | ID: covidwho-2323608

ABSTRACT

An outbreak of acute hepatitis of unknown aetiology in children was reported in Scotland1 in April 2022 and has now been identified in 35 countries2. Several recent studies have suggested an association with human adenovirus with this outbreak, a virus not commonly associated with hepatitis. Here we report a detailed case-control investigation and find an association between adeno-associated virus 2 (AAV2) infection and host genetics in disease susceptibility. Using next-generation sequencing, PCR with reverse transcription, serology and in situ hybridization, we detected recent infection with AAV2 in plasma and liver samples in 26 out of 32 (81%) cases of hepatitis compared with 5 out of 74 (7%) of samples from unaffected individuals. Furthermore, AAV2 was detected within ballooned hepatocytes alongside a prominent T cell infiltrate in liver biopsy samples. In keeping with a CD4+ T-cell-mediated immune pathology, the human leukocyte antigen (HLA) class II HLA-DRB1*04:01 allele was identified in 25 out of 27 cases (93%) compared with a background frequency of 10 out of 64 (16%; P = 5.49 × 10-12). In summary, we report an outbreak of acute paediatric hepatitis associated with AAV2 infection (most likely acquired as a co-infection with human adenovirus that is usually required as a 'helper virus' to support AAV2 replication) and disease susceptibility related to HLA class II status.


Subject(s)
Adenovirus Infections, Human , Dependovirus , Hepatitis , Child , Humans , Acute Disease/epidemiology , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/genetics , Adenovirus Infections, Human/virology , Alleles , Case-Control Studies , CD4-Positive T-Lymphocytes/immunology , Coinfection/epidemiology , Coinfection/virology , Dependovirus/isolation & purification , Genetic Predisposition to Disease , Helper Viruses/isolation & purification , Hepatitis/epidemiology , Hepatitis/genetics , Hepatitis/virology , Hepatocytes/virology , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology , Liver/virology
3.
Proc Natl Acad Sci U S A ; 120(21): e2217119120, 2023 05 23.
Article in English | MEDLINE | ID: covidwho-2312891

ABSTRACT

Occurrence of hyperglycemia upon infection is associated with worse clinical outcome in COVID-19 patients. However, it is still unknown whether SARS-CoV-2 directly triggers hyperglycemia. Herein, we interrogated whether and how SARS-CoV-2 causes hyperglycemia by infecting hepatocytes and increasing glucose production. We performed a retrospective cohort study including patients that were admitted at a hospital with suspicion of COVID-19. Clinical and laboratory data were collected from the chart records and daily blood glucose values were analyzed to test the hypothesis on whether COVID-19 was independently associated with hyperglycemia. Blood glucose was collected from a subgroup of nondiabetic patients to assess pancreatic hormones. Postmortem liver biopsies were collected to assess the presence of SARS-CoV-2 and its transporters in hepatocytes. In human hepatocytes, we studied the mechanistic bases of SARS-CoV-2 entrance and its gluconeogenic effect. SARS-CoV-2 infection was independently associated with hyperglycemia, regardless of diabetic history and beta cell function. We detected replicating viruses in human hepatocytes from postmortem liver biopsies and in primary hepatocytes. We found that SARS-CoV-2 variants infected human hepatocytes in vitro with different susceptibility. SARS-CoV-2 infection in hepatocytes yields the release of new infectious viral particles, though not causing cell damage. We showed that infected hepatocytes increase glucose production and this is associated with induction of PEPCK activity. Furthermore, our results demonstrate that SARS-CoV-2 entry in hepatocytes occurs partially through ACE2- and GRP78-dependent mechanisms. SARS-CoV-2 infects and replicates in hepatocytes and exerts a PEPCK-dependent gluconeogenic effect in these cells that potentially is a key cause of hyperglycemia in infected patients.


Subject(s)
COVID-19 , Hyperglycemia , Humans , COVID-19/complications , SARS-CoV-2 , Gluconeogenesis , Blood Glucose , Retrospective Studies , Hepatocytes , Hyperglycemia/complications , Glucose
4.
Hepatol Commun ; 7(3): e0034, 2023 03 01.
Article in English | MEDLINE | ID: covidwho-2269319

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a global pandemic that has caused more than 600 million cases and over six million deaths worldwide. Despite the availability of vaccination, COVID-19 cases continue to grow making pharmacological interventions essential. Remdesivir (RDV) is an FDA-approved antiviral drug for treatment of both hospitalized and non-hospitalized COVID-19 patients, albeit with potential for hepatotoxicity. This study characterizes the hepatotoxicity of RDV and its interaction with dexamethasone (DEX), a corticosteroid often co-administered with RDV for inpatient treatment of COVID-19. METHODS: Human primary hepatocytes and HepG2 cells were used as in vitro models for toxicity and drug-drug interaction studies. Real-world data from hospitalized COVID-19 patients were analyzed for drug-induced elevation of serum ALT and AST. RESULTS: In cultured hepatocytes, RDV markedly reduced the hepatocyte viability and albumin synthesis, while it increased the cleavage of caspase-8 and caspase-3, phosphorylation of histone H2AX, and release of ALT and AST in a concentration-dependent manner. Importantly, co-treatment with DEX partially reversed RDV-induced cytotoxic responses in human hepatocytes. Moreover, data from COVID-19 patients treated with RDV with and without DEX co-treatment suggested that among 1037 patients matched by propensity score, receiving the drug combination was less likely to result in elevation of serum AST and ALT levels (≥ 3 × ULN) compared to the RDV alone treated patients (OR = 0.44, 95% CI = 0.22-0.92, p = 0.03). CONCLUSION: Our findings obtained from in vitro cell-based experiments and patient data analysis provide evidence suggesting combination of DEX and RDV holds the potential to reduce the likelihood of RDV-induced liver injury in hospitalized COVID-19 patients.


Subject(s)
COVID-19 , Chemical and Drug Induced Liver Injury , Humans , COVID-19 Drug Treatment , Hepatocytes , Dexamethasone
5.
World J Gastroenterol ; 29(3): 425-449, 2023 Jan 21.
Article in English | MEDLINE | ID: covidwho-2217139

ABSTRACT

The coronavirus disease 2019 (COVID-19) represents a global health and economic challenge. Hepatic injuries have been approved to be associated with severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection. The viral tropism pattern of SARS-CoV-2 can induce hepatic injuries either by itself or by worsening the conditions of patients with hepatic diseases. Besides, other factors have been reported to play a crucial role in the pathological forms of hepatic injuries induced by SARS-CoV-2, including cytokine storm, hypoxia, endothelial cells, and even some treatments for COVID-19. On the other hand, several groups of people could be at risk of hepatic COVID-19 complications, such as pregnant women and neonates. The present review outlines and discusses the interplay between SARS-CoV-2 infection and hepatic injury, hepatic illness comorbidity, and risk factors. Besides, it is focused on the vaccination process and the role of developed vaccines in preventing hepatic injuries due to SARS-CoV-2 infection.


Subject(s)
COVID-19 , Infant, Newborn , Humans , Female , Pregnancy , COVID-19/complications , SARS-CoV-2 , Endothelial Cells , Liver , Hepatocytes
6.
Methods Mol Biol ; 2544: 95-106, 2022.
Article in English | MEDLINE | ID: covidwho-2034994

ABSTRACT

Lipid formulations for cell transfection are among the most efficient systems for nucleic acid delivery. During the COVID-19 pandemic, lipid-encapsulated RNA (lipid nanoparticles, LNP) has succeeded as a superior vaccine. Moreover, other similar lipid nanocarriers for siRNA are approved and many are on the pipelines. While lipid encapsulation required several devices for the mixing of components, lipoplex technology allows to rapidly mix nucleic acids and positively charged lipids for cell transfection. In vivo, hepatocytes are important target cells of lipid formulated RNAi. This chapter describes the state-of-the-art lipoplex and LPN manufacturing for treating primary hepatocytes with lipid formulations. Furthermore, protocols for isolating murine hepatocytes and for transfecting these cells with pharmaceutically relevant lipid formulations are provided and discussed.


Subject(s)
COVID-19 , Nucleic Acids , Animals , Hepatocytes , Humans , Lipids , Liposomes , Mice , Nanoparticles , Pandemics , RNA, Small Interfering/genetics
7.
Inflammopharmacology ; 30(3): 775-788, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-2003753

ABSTRACT

Metformin can suppress gluconeogenesis and reduce blood sugar by activating adenosine monophosphate-activated protein kinase (AMPK) and inducing small heterodimer partner (SHP) expression in the liver cells. The main mechanism of metformin's action is related to its activation of the AMPK enzyme and regulation of the energy balance. AMPK is a heterothermic serine/threonine kinase made of a catalytic alpha subunit and two subunits of beta and a gamma regulator. This enzyme can measure the intracellular ratio of AMP/ATP. If this ratio is high, the amino acid threonine 172 available in its alpha chain would be activated by the phosphorylated liver kinase B1 (LKB1), leading to AMPK activation. Several studies have indicated that apart from its significant role in the reduction of blood glucose level, metformin activates the AMPK enzyme that in turn has various efficient impacts on the regulation of various processes, including controlling inflammatory conditions, altering the differentiation pathway of immune and non-immune cell pathways, and the amelioration of various cancers, liver diseases, inflammatory bowel disease (IBD), kidney diseases, neurological disorders, etc. Metformin's activation of AMPK enables it to control inflammatory conditions, improve oxidative status, regulate the differentiation pathways of various cells, change the pathological process in various diseases, and finally have positive therapeutic effects on them. Due to the activation of AMPK and its role in regulating several subcellular signalling pathways, metformin can be effective in altering the cells' proliferation and differentiation pathways and eventually in the prevention and treatment of certain diseases.


Subject(s)
Metformin , Neoplasms , AMP-Activated Protein Kinases/metabolism , Cell Proliferation , Hepatocytes , Humans , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Metformin/therapeutic use , Neoplasms/drug therapy , Neoplasms/prevention & control
8.
Commun Biol ; 5(1): 827, 2022 08 17.
Article in English | MEDLINE | ID: covidwho-1991683

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a multi-organ damage that includes hepatic dysfunction, which has been observed in over 50% of COVID-19 patients. Liver injury in COVID-19 could be attributed to the cytopathic effects, exacerbated immune responses or treatment-associated drug toxicity. Herein we demonstrate that hepatocytes are susceptible to infection in different models: primary hepatocytes derived from humanized angiotensin-converting enzyme-2 mice (hACE2) and primary human hepatocytes. Pseudotyped viral particles expressing the full-length spike of SARS-CoV-2 and recombinant receptor binding domain (RBD) bind to ACE2 expressed by hepatocytes, promoting metabolic reprogramming towards glycolysis but also impaired mitochondrial activity. Human and hACE2 primary hepatocytes, where steatosis and inflammation were induced by methionine and choline deprivation, are more vulnerable to infection. Inhibition of the renin-angiotensin system increases the susceptibility of primary hepatocytes to infection with pseudotyped viral particles. Metformin, a common therapeutic option for hyperglycemia in type 2 diabetes patients known to partially attenuate fatty liver, reduces the infection of human and hACE2 hepatocytes. In summary, we provide evidence that hepatocytes are amenable to infection with SARS-CoV-2 pseudovirus, and we propose that metformin could be a therapeutic option to attenuate infection by SARS-CoV-2 in patients with fatty liver.


Subject(s)
COVID-19 Drug Treatment , Diabetes Mellitus, Type 2 , Fatty Liver , Metformin , Animals , Hepatocytes/metabolism , Humans , Metformin/pharmacology , Mice , Peptidyl-Dipeptidase A , SARS-CoV-2
9.
Mol Pharm ; 19(7): 2175-2182, 2022 07 04.
Article in English | MEDLINE | ID: covidwho-1873399

ABSTRACT

Ionizable cationic lipids are essential for efficient in vivo delivery of RNA by lipid nanoparticles (LNPs). DLin-MC3-DMA (MC3), ALC-0315, and SM-102 are the only ionizable cationic lipids currently clinically approved for RNA therapies. ALC-0315 and SM-102 are structurally similar lipids used in SARS-CoV-2 mRNA vaccines, while MC3 is used in siRNA therapy to knock down transthyretin in hepatocytes. Hepatocytes and hepatic stellate cells (HSCs) are particularly attractive targets for RNA therapy because they synthesize many plasma proteins, including those that influence blood coagulation. While LNPs preferentially accumulate in the liver, evaluating the ability of different ionizable cationic lipids to deliver RNA cargo into distinct cell populations is important for designing RNA-LNP therapies with minimal hepatotoxicity. Here, we directly compared LNPs containing either ALC-0315 or MC3 to knock-down coagulation factor VII (FVII) in hepatocytes and ADAMTS13 in HSCs. At a dose of 1 mg/kg siRNA in mice, LNPs with ALC-0315 achieved a 2- and 10-fold greater knockdown of FVII and ADAMTS13, respectively, compared to LNPs with MC3. At a high dose (5 mg/kg), ALC-0315 LNPs increased markers of liver toxicity (ALT and bile acids), while the same dose of MC3 LNPs did not. These results demonstrate that ALC-0315 LNPs achieves potent siRNA-mediated knockdown of target proteins in hepatocytes and HSCs, in mice, though markers of liver toxicity can be observed after a high dose. This study provides an initial comparison that may inform the development of ionizable cationic LNP therapeutics with maximal efficacy and limited toxicity.


Subject(s)
COVID-19 , Nanoparticles , Amino Alcohols , Animals , Caprylates , Cations/metabolism , Decanoates , Hepatic Stellate Cells/metabolism , Hepatocytes/metabolism , Lipids , Liposomes , Mice , RNA, Small Interfering , SARS-CoV-2
10.
Nat Metab ; 4(3): 301-302, 2022 03.
Article in English | MEDLINE | ID: covidwho-1764214
11.
J Virol ; 96(7): e0199521, 2022 04 13.
Article in English | MEDLINE | ID: covidwho-1745826

ABSTRACT

C-type lectin domain-containing proteins (CTLDcps) shape host responses to pathogens and infectious disease outcomes. Previously, we identified the murine CTLDcp Cd302 as restriction factor, limiting hepatitis C virus (HCV) infection of murine hepatocytes. In this study, we investigated in detail the human orthologue's ability to restrict HCV infection in human liver cells. CD302 overexpression in Huh-7.5 cells potently inhibited infection of diverse HCV chimeras representing seven genotypes. Transcriptional profiling revealed abundant CD302 mRNA expression in human hepatocytes, the natural cellular target of HCV. Knockdown of endogenously expressed CD302 modestly enhanced HCV infection of Huh-7.5 cells and primary human hepatocytes. Functional analysis of naturally occurring CD302 transcript variants and engineered CD302 mutants showed that the C-type lectin-like domain (CTLD) is essential for HCV restriction, whereas the cytoplasmic domain (CPD) is dispensable. Coding single nucleotide polymorphisms occurring in human populations and mapping to different domains of CD302 did not influence the capacity of CD302 to restrict HCV. Assessment of the anti-HCV phenotype at different life cycle stages indicated that CD302 preferentially targets the viral entry step. In contrast to the murine orthologue, overexpression of human CD302 did not modulate downstream expression of nuclear receptor-controlled genes. Ectopic CD302 expression restricted infection of liver tropic hepatitis E virus (HEV), while it did not affect infection rates of two respiratory viruses, including respiratory syncytial virus (RSV) and the alpha coronavirus HVCoV-229E. Together, these findings suggest that CD302 contributes to liver cell-intrinsic defense against HCV and might mediate broader antiviral defenses against additional hepatotropic viruses. IMPORTANCE The liver represents an immunoprivileged organ characterized by enhanced resistance to immune responses. However, the importance of liver cell-endogenous, noncytolytic innate immune responses in pathogen control is not well defined. Although the role of myeloid cell-expressed CTLDcps in host responses to viruses has been characterized in detail, we have little information about their potential functions in the liver and their relevance for immune responses in this organ. Human hepatocytes endogenously express the CTLDcp CD302. Here, we provide evidence that CD302 limits HCV infection of human liver cells, likely by inhibiting a viral cell entry step. We confirm that the dominant liver-expressed transcript variant, as well as naturally occurring coding variants of CD302, maintain the capacity to restrict HCV. We further show that the CTLD of the protein is critical for the anti-HCV activity and that overexpressed CD302 limits HEV infection. Thus, CD302 likely contributes to human liver-intrinsic antiviral defenses.


Subject(s)
Hepacivirus , Hepatitis C , Lectins, C-Type , Receptors, Cell Surface , Antiviral Agents/metabolism , Hepacivirus/physiology , Hepatitis C/immunology , Hepatocytes/immunology , Hepatocytes/virology , Humans , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Virus Replication
12.
Sci Rep ; 12(1): 1859, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1671609

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is the receptor of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causing Coronavirus disease 2019 (COVID-19). Transmembrane serine protease 2 (TMPRSS2) is a coreceptor. Abnormal hepatic function in COVID-19 suggests specific or bystander liver disease. Because liver cancer cells express the ACE2 viral receptor, they are widely used as models of SARS-CoV-2 infection in vitro. Therefore, the purpose of this study was to analyze ACE2 and TMPRSS2 expression and localization in human liver cancers and in non-tumor livers. We studied ACE2 and TMPRSS2 in transcriptomic datasets totaling 1503 liver cancers, followed by high-resolution confocal multiplex immunohistochemistry and quantitative image analysis of a 41-HCC tissue microarray. In cancers, we detected ACE2 and TMPRSS2 at the biliary pole of tumor hepatocytes. In whole mount sections of five normal liver samples, we identified ACE2 in hepatocyte's bile canaliculi, biliary epithelium, sinusoidal and capillary endothelial cells. Tumors carrying mutated ß-catenin showed ACE2 DNA hypomethylation and higher mRNA and protein expression, consistently with predicted ß-catenin response sites in the ACE2 promoter. Finally, ACE2 and TMPRSS2 co-expression networks highlighted hepatocyte-specific functions, oxidative stress and inflammation, suggesting a link between inflammation, ACE2 dysfunction and metabolic breakdown.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , Carcinoma, Hepatocellular/metabolism , Hepatocytes/metabolism , Liver Neoplasms/metabolism , Receptors, Virus/metabolism , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , DNA Methylation , Gene Expression , Humans , Inflammation , Mutation , Oxidative Stress/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Virus/genetics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , beta Catenin/genetics , beta Catenin/metabolism
13.
Signal Transduct Target Ther ; 7(1): 23, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-1655541
14.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Article in English | MEDLINE | ID: covidwho-1642084

ABSTRACT

Novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants pose a challenge to controlling the COVID-19 pandemic. Previous studies indicate that clinical samples collected from individuals infected with the Delta variant may contain higher levels of RNA than previous variants, but the relationship between levels of viral RNA and infectious virus for individual variants is unknown. We measured infectious viral titer (using a microfocus-forming assay) and total and subgenomic viral RNA levels (using RT-PCR) in a set of 162 clinical samples containing SARS-CoV-2 Alpha, Delta, and Epsilon variants that were collected in identical swab kits from outpatient test sites and processed soon after collection. We observed a high degree of variation in the relationship between viral titers and RNA levels. Despite this, the overall infectivity differed among the three variants. Both Delta and Epsilon had significantly higher infectivity than Alpha, as measured by the number of infectious units per quantity of viral E gene RNA (5.9- and 3.0-fold increase; P < 0.0001, P = 0.014, respectively) or subgenomic E RNA (14.3- and 6.9-fold increase; P < 0.0001, P = 0.004, respectively). In addition to higher viral RNA levels reported for the Delta variant, the infectivity (amount of replication competent virus per viral genome copy) may be increased compared to Alpha. Measuring the relationship between live virus and viral RNA is an important step in assessing the infectivity of novel SARS-CoV-2 variants. An increase in the infectivity for Delta may further explain increased spread, suggesting a need for increased measures to prevent viral transmission.


Subject(s)
COVID-19/epidemiology , Gene Expression Regulation, Viral , Genome, Viral , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Animals , COVID-19/pathology , COVID-19/transmission , COVID-19/virology , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus Envelope Proteins/genetics , Coronavirus Envelope Proteins/metabolism , Hepatocytes/metabolism , Hepatocytes/virology , Humans , RNA, Viral/metabolism , SARS-CoV-2/classification , SARS-CoV-2/metabolism , Vero Cells , Viral Load , Virulence
15.
Hepatol Commun ; 6(6): 1262-1277, 2022 06.
Article in English | MEDLINE | ID: covidwho-1568068

ABSTRACT

During the pandemic, dexamethasone (DEX), remdesivir (RDV), hydroxychloroquine (HCQ), thapsigargin (TG), camostat mesylate (CaM), and pralatrexate were repurposed drugs for coronavirus disease 2019 (COVID-19). However, the side effects on the liver associated with the anti-COVID therapies are unknown. Cellular stresses by these drugs at 0-30 µM were studied using HepG2, Huh7, and/or primary human hepatocytes. DEX or RDV induced endoplasmic reticulum stress with increased X-box binding protein 1 and autophagic response with increased accumulation of microtubule-associated protein 1A/1B-light chain 3 (LC3-II). DEX and RDV had additive effects on the stress responses in the liver cells, which further increased expression of activating transcription factor 4 and C/EBP homology protein 1 (CHOP), and cell death. Alcohol pretreatment (50 mM) and DEX induced greater cellular stress responses than DEX and RDV. Pralatrexate induced Golgi fragmentation, cell cycle arrest at G0/G1 phase, activations of poly (ADP-ribose) polymerase-1 (PARP) and caspases, and cell death. Pralatrexate and alcohol had synergistic effects on the cell death mediators of Bim, caspase3, and PARP. The protease inhibitor CaM and TG induced autophagic response and mitochondrial stress with altered mitochondrial membrane potential, B-cell lymphoma 2, and cytochrome C. TG and HCQ induced autophagic response markers of Unc-51 like autophagy activating kinase, LC3-II, Beclin1, and Atg5, and severe ER stress marker CHOP. Conclusion: These results suggest that the anti-COVID-19 drugs, especially with drug-drug or alcohol-drug combinations, cause cellular stress responses and injuries in the liver cells.


Subject(s)
COVID-19 Drug Treatment , Endoplasmic Reticulum Stress , Ethanol/metabolism , Hepatocytes , Humans , Microtubule-Associated Proteins/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Thapsigargin/pharmacology , Transcription Factor CHOP/metabolism
16.
Pharmacol Res Perspect ; 9(1): e00712, 2021 02.
Article in English | MEDLINE | ID: covidwho-1482163

ABSTRACT

Mass drug administration of ivermectin has been proposed as a possible malaria elimination tool. Ivermectin exhibits a mosquito-lethal effect well beyond its biological half-life, suggesting the presence of active slowly eliminated metabolites. Human liver microsomes, primary human hepatocytes, and whole blood from healthy volunteers given oral ivermectin were used to identify ivermectin metabolites by ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry. The molecular structures of metabolites were determined by mass spectrometry and verified by nuclear magnetic resonance. Pure cytochrome P450 enzyme isoforms were used to elucidate the metabolic pathways. Thirteen different metabolites (M1-M13) were identified after incubation of ivermectin with human liver microsomes. Three (M1, M3, and M6) were the major metabolites found in microsomes, hepatocytes, and blood from volunteers after oral ivermectin administration. The chemical structure, defined by LC-MS/MS and NMR, indicated that M1 is 3″-O-demethyl ivermectin, M3 is 4-hydroxymethyl ivermectin, and M6 is 3″-O-demethyl, 4-hydroxymethyl ivermectin. Metabolic pathway evaluations with characterized cytochrome P450 enzymes showed that M1, M3, and M6 were produced primarily by CYP3A4, and that M1 was also produced to a small extent by CYP3A5. Demethylated (M1) and hydroxylated (M3) ivermectin were the main human in vivo metabolites. Further studies are needed to characterize the pharmacokinetic properties and mosquito-lethal activity of these metabolites.


Subject(s)
Antiparasitic Agents/pharmacokinetics , Ivermectin/pharmacokinetics , Administration, Oral , Antiparasitic Agents/blood , Antiparasitic Agents/pharmacology , Cells, Cultured , Cytochrome P-450 Enzyme System/metabolism , Demethylation , Hepatocytes/metabolism , Humans , Hydroxylation , Ivermectin/blood , Ivermectin/pharmacology , Metabolic Networks and Pathways , Microsomes, Liver/metabolism
17.
Eur Rev Med Pharmacol Sci ; 25(19): 5904-5912, 2021 10.
Article in English | MEDLINE | ID: covidwho-1478932

ABSTRACT

OBJECTIVE: Liver injury has been reported in patients with COVID-19. This condition is characterized by severe outcome and could be related with the ability of SARS-CoV-2 to activate cytotoxic T cells. The purpose of this study is to show the histological and scanning electron microscopy features of liver involvement in COVID-19 to characterize the liver changes caused by the activation of multiple molecular pathways following this infection. PATIENTS AND METHODS: Liver biopsies from 4 patients (3 post-mortems and 1 in vivo) with COVID-19 were analyzed with histology and by scanning electron microscopy. RESULTS: The liver changes showed significant heterogeneity. The first case showed ground glass hepatocytes and scattered fibrin aggregates in the sinusoidal lumen. The second evidenced intra-sinusoidal thrombi. The third was characterized by sinusoidal dilatation, atrophy of hepatocytes, Disse's spaces dilatation and intra-sinusoidal aggregates of fibrin and red blood cells. The fourth case exhibited diffuse fibrin aggregates in the dilated Disse spaces and microthrombi in the sinusoidal lumen. CONCLUSIONS: In COVID-19-related liver injury, a large spectrum of pathological changes was observed. The most peculiar features were very mild inflammation, intra-sinusoidal changes, including sinusoidal dilatation, thrombotic sinusoiditis and diffuse intra-sinusoidal fibrin deposition. These findings suggested that a thrombotic sinusoiditis followed by a local diffuse intra-vascular (intra-sinusoidal) coagulation could be the typical features of the SARS-CoV-2-related liver injury.


Subject(s)
Blood Coagulation Disorders/pathology , COVID-19/pathology , Liver Diseases/pathology , Liver/pathology , Thrombosis/pathology , Aged , Autopsy , Biopsy , Erythrocytes/pathology , Fibrin , Hepatocytes/pathology , Humans , Male , Microscopy, Electron, Scanning , Middle Aged , Thrombosis/complications , Young Adult
18.
Front Immunol ; 12: 712572, 2021.
Article in English | MEDLINE | ID: covidwho-1472386

ABSTRACT

The complement system is central to first-line defense against invading pathogens. However, excessive complement activation and/or the loss of complement regulation contributes to the development of autoimmune diseases, systemic inflammation, and thrombosis. One of the three pathways of the complement system, the alternative complement pathway, plays a vital role in amplifying complement activation and pathway signaling. Complement factor D, a serine protease of this pathway that is required for the formation of C3 convertase, is the rate-limiting enzyme. In this review, we discuss the function of factor D within the alternative pathway and its implication in both healthy physiology and disease. Because the alternative pathway has a role in many diseases that are characterized by excessive or poorly mediated complement activation, this pathway is an enticing target for effective therapeutic intervention. Nonetheless, although the underlying disease mechanisms of many of these complement-driven diseases are quite well understood, some of the diseases have limited treatment options or no approved treatments at all. Therefore, in this review we explore factor D as a strategic target for advancing therapeutic control of pathological complement activation.


Subject(s)
Complement Factor D/antagonists & inhibitors , Complement Pathway, Alternative/drug effects , Molecular Targeted Therapy , Adipose Tissue/metabolism , Aging/immunology , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/drug therapy , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Complement Factor D/biosynthesis , Complement Factor D/deficiency , Complement Factor D/physiology , Energy Metabolism , Geographic Atrophy/genetics , Geographic Atrophy/immunology , Hemoglobinuria, Paroxysmal/drug therapy , Hemoglobinuria, Paroxysmal/genetics , Hemoglobinuria, Paroxysmal/immunology , Hepatocytes , Humans , Kidney Diseases/immunology , Liver/injuries , Oligonucleotides, Antisense/therapeutic use , Peptides, Cyclic/therapeutic use , Phagocytosis
19.
PLoS Pathog ; 17(9): e1009840, 2021 09.
Article in English | MEDLINE | ID: covidwho-1403328

ABSTRACT

COVID-19 vaccines based on the Spike protein of SARS-CoV-2 have been developed that appear to be largely successful in stopping infection. However, therapeutics that can help manage the disease are still required until immunity has been achieved globally. The identification of repurposed drugs that stop SARS-CoV-2 replication could have enormous utility in stemming the disease. Here, using a nano-luciferase tagged version of the virus (SARS-CoV-2-ΔOrf7a-NLuc) to quantitate viral load, we evaluated a range of human cell types for their ability to be infected and support replication of the virus, and performed a screen of 1971 FDA-approved drugs. Hepatocytes, kidney glomerulus, and proximal tubule cells were particularly effective in supporting SARS-CoV-2 replication, which is in-line with reported proteinuria and liver damage in patients with COVID-19. Using the nano-luciferase as a measure of virus replication we identified 35 drugs that reduced replication in Vero cells and human hepatocytes when treated prior to SARS-CoV-2 infection and found amodiaquine, atovaquone, bedaquiline, ebastine, LY2835219, manidipine, panobinostat, and vitamin D3 to be effective in slowing SARS-CoV-2 replication in human cells when used to treat infected cells. In conclusion, our study has identified strong candidates for drug repurposing, which could prove powerful additions to the treatment of COVID.


Subject(s)
COVID-19 Drug Treatment , Drug Discovery/methods , Drug Repositioning , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Animals , Biomarkers , Cell Line , Chlorocebus aethiops , Hepatocytes/virology , Humans , Luciferases/pharmacology , Nanostructures , SARS-CoV-2/genetics , Vero Cells , Virus Replication/drug effects
20.
Signal Transduct Target Ther ; 5(1): 221, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-1387195
SELECTION OF CITATIONS
SEARCH DETAIL